ICL DAP (2)

11.2.5

11.2.5.1

11.2.52

11253

APAL instruction set

where (store address) is a plane aligned address as described in section 11.2.3. The effective
INT value generated by such an address is as described above; the effective ADDR value is as
described in section 11.2.3.

Examples

MO.12 VARI + 2 (M6) (+)
M1.20 (-)

M6.14 471 (M4)
Instruction addresses

This section describes the syntax of construction addresses as written in APAL jump
instructions.

Syntax
{instruction address) ::={within-section address) | inter-section address)
{within-section address)::= (code label name)(label offset) ?| {star) {label offset)

{inter-section address) ::= {code section name >{section offset) ?| (entry point name)
{section offset>?

(label offset) ::= + {(number) | — (number)
{section offset) ::= + (number)

- {star)==x

Transferring control within a code section

The J and JSL instructions (see section 11.3) transfer control to another instruction in the
same code section by placing the address of the destination .instruction in the program
counter.

The address of an instruction in the same code section may be either of the following:
1 The name of a code label in the same code section with an optional displacement (in
32-bit words) forwards or backwards

2 A displacement, forwards or backwards, from the current instruction; that is, the jump
instruction. The current instruction is represented by the character *

Examples

LABI (transfer to instruction labelled LAB1)

LAB2+3 (transfer to third instruction after instruction labelled LAB2)
*—2 (transfer to instruction two instructions before this instruction)

Transferring control between code sections

The JE and JESL instructions (see section 11.3) transfer control to an instruction in a
different code section by placing the address of the destination instruction in the program
counter. These instructions may also transfer control to the beginning of the current code
section, or to a named entry point within it.

If the operand of a JE or JESL instruction has not been previously declared, the assembler
will implicitly define it as a code section. When the name is actually declared in the same or a
subsequent module it may be a code section or entry point name.

The address of an instruction in a different code section may be either of the following:

1 The name of another code section, with an optional forward displacement (in 32-bit
words)

2 The name of an entry point within another code section, with an optional forward
displacement.

11—12 6919/0

11.3

11.3.1

APAL instruction set

Examples
CODESEC2 + 3 (transfer to fourth instruction in code section CODESEC2)
ENTPOINT1 (transfer control to first instruction following entry point

ENTPOINT1)

All instruction addresses in an assembled jump instruction are relative to a program code
datum, and must not exceed the program code limit.

The instruction set

The syntax and function of each APAL instruction is described in section 11.3.4. The instruc-
tions are described in alphabetical order, and where an instruction has a companion instruc-
tion that performs the same operation on an inverted operand these instructions are
described together.

Each instruction description has the following general form:

1 A brief description of the function(s) performed by the instruction
2 The syntax of the instruction as it is written in an APAL code section. Many of these
syntax descriptions refer to the appropriate part of section 11.2

3 The 32-bit binary format into which the instruction is assembled. Each instruction field
is represented by an alphabetic character, repeated a number of times equal to the
number of bits occupied by that field. Instruction fields are represented by the following

characters:

Character Instruction field

A ADDR field

C COUNT field

D DIRECTION field

G GEOMETRY field

| INT field

J Field containing an instruction address in a Jump instruction

M MOD field

R MCUR field

S SELECT field (for instructions that address store rows or columns)
+ INCREMENT field

- DECREMENT field

V4 Field containing the address of a store plane each bit of which is zero

The OPERATION field is represented by the actual nine-bit binary pattern associated
with the instruction mnemonic.

A period (.) represents an instruction bit that is ignored by the hardware and is set to
zero by the assembler.

The binary format may be followed by notes describing how the APAL syntax is related
to the binary format

4 Run-time program errors that may occur as a result of the execution of the instruction
5 In non-trivial cases, an example of the instruction

Pseudo and compound instructions

A number of pseudo instructions are provided that allow convenient handling of literals and
addresses. Each pseudo instruction generates a single hardware instruction and may also
generate a literal in the program literals area. The APAL pseudo instructions are:

LOOP
RAC
RACE
RALIT
RAPL
RAR
RASC
RDGC
RLIT

6919/1 11—13

REPRINTED FROM
HIGH SPEED COMPUTER AND ALGORITHM ORGARIZATION
© 1977
ACADEMIC PRESS, INC
NEwW YORK SAN FRANCISCO [l]

EFFICIENT HIGH SPEED COMPUTING WITH THE
DISTRIBUTED ARRAY PROCESSOR

P.M. Flanders, D.J. Hunt, S.F. Reddaway, D. Parkinson
International Computers Limited

The Distributed Array Processor (DAP) is a STMD
(Single Instruction - Maltiple Data) machine which
distributes a few thousand very simple bit-organised
processing elements throughout a store module of a
conventional computing system. The design is presented,
together with details of its arithmetic and logical
capability and of the software system being implemented.
Some algorithms have been run on a pilot 32 x 32 DAP
and their performance is discussed. The size and
performance of probable future models are also
considered. The results of some application studies
are presented illustrating the high performance
achievable with this flexible and cost effective
processor.

I. PRINCIPLES

The Distributed Array Processor (DAP) is a computer
architecture capable of achieving high performance on a
variety of large computing jobs. It comprises a few thousand
Processing Elements (PEs) arranged in a two-dimensional array.
The PEs are very simple but high processing power is achieved
by having many of them. They execute a common instruction
stream broadcast by a Master Control Unit (MGU), the DAP is
thus classified as a SIMD (Single Instruction - Multiple Data)
machine.

Various sizes of PE array can be made, offering a range
of processing powers. It is most natural for the array to be
a square vhose side is simply related to standard store
highway widths. The design aims for cost-effectiveness
rather than speed at any price.

The PEs are bit organised giving great flexibility.
Hence parallelism can be exploited in operations such as
table lookup, scanning data, symbol processing and sorting
as well as arithmetic. Each PE has associated with it a few

113

114 P. M. FLANDERS et al.

thousand bits of fast random access storage. The fast
parallel transfer between stores and PEs balances the high
processing speed.

The totality of PE stores form a standard store module
of a conventional computer. Hence there is no need for
separate transfer of data between host and DAP. DAP
processing is under the control of the host via a simple
interface. Being part of a general purpose system has two
related advantages. It gives access to the facilities of
that system, in particular the operating system, languages
and input-output, and it allows users progressively to take
advantage of DAP processing.

A pilot model having 1024 PEs arranged 32 x 32 each with
1K (expandable to 2K) bits of bipolar store has been working
since Spring 1976. It has a total of 89 boards, most of
which are "array" boards each having 79 16~pin off-the-shelf
T, integrated circuits forming the logic and storage for 16
PEs. The total power dissipation excluding fans and power
supply losses is under 1.5K Watts

The next model will achieve about five times more
processing power with a 64 x 64 array. Bach PE will have 4K
bits giving a 2 MByte store module. The DAP architecture is
ideal for custom LSI, so a 128 x 128 model could be built
using today's semiconductor technology.

A. Processing Element

Figure 1 shows the essential features of one PE with
some of the control and data paths omitted for clarity (the
PE has been simplified since (1)) A1l data paths are one
bit wide.

The top multiplexor selects the input to the Arithmetic
and Logic Unit (ALU), which may be either the PEs own output
or that from its North, East, South, or West neighbour. The
bottom multiplexor selects the PE output; which may be an ALU
output, or store output, and may go to the store, another PE
or to the MCU. The two multiplexors also allow input of data
broadcast from the MCU along row or column highways.

The ALU has three one-bit registers (4, Q and ¢) and a
one-bit full adder. The low level software allows total
flexibility in the use of ALU facilities but most common
usage is as follows.

Register A provides tactivity! controls certain store
write operations are only effective if this register is true.
This allows application of a function to selected elements
of an array and is also used for bit level implementation
within functions. The A register incorporates a logical AND
facility which allows conditions to be combined rapidly and

COMPUTER SYSTEM DESIGN AND THEORY 115

NES WA ROW_HIGHWAY

MULTIPLEXOR

ARITHMETIC & LOGIC UNIT

[] [L[]

activity carry PU— 1

| adder l RIPPLE ' CARRY

=xap OU L

) i LUMN _HIGHVVAY.
MULTIPLEXOR

NEIGHBOURS. MCU

STORE
4k x 1

L1
Fig.1. DProcessing Element.

may also be used in its own right for implementing general
logic functions.

The Q register acts as a one bit accumulator and the C
register as a carry store. The adder adds Q, C and the ALU
input and its sum output may be written back to Q and its
carry output to C.

B. Master Control Unit

Figure 2 is a schematic of the MCU, which may be
likened to the instruction sequencing and control sections
of a small computer. Implementation of an array instruction
involves a Fetch phase, during which the instruction is
fetched from the array store; and an Execute phase, during
which appropriate control gignals are broadcast to the
array. Each phase uses one basic machine cycle.

Esch instruction occupies 32 bits along cne row of PEs
and successive instructions are held in successive rows (or
part rows) so that code is spread evenly among the PE stores.
Tt must be emphasised that instructions can only be

116 P. M. FLANDERS et al.

INSTRUCTION
Mo COUNTER
M1 ey
2 n INSTRUCTION
- BUFFER
Ma || INSTRUCTION
M5 o MODIFICATION
M6 -
M7 - broadcast
to array
column
! highways
PROCESSING
ELEMENT s
row
highways ARRAY

Fig.2. Master Control Unit

interpreted by the MCU; the PEs cannot recognise instructions
themselves.

An important feature is the instruction buffer which
stores loops (of up to 15 instructions on the pilot)
explicitly specified by low level coding. Hence the
instructions need to be fetched only once prior to the first
time found the loop. Automatic stepping of addresses is
possible for operating on successive bits of a word.

There are eight general purpose registers, M¢ to M7 with
length equal to the side of the PE array. These may held
data or addresses used in instruction fetching or execubion.
The register contents may be transferred to or from the array
along the row or column highways.

The normal control transfer instructions GOTO, LINK and
EXIT and facilities for address arithmetic are provided.

The MCU also contains the store and control interfaces
(not shown in Figure 2) to the host. When the DAP is process-
ing, the host can still access the store by cycle stealing.

COMPUTER SYSTEM DESIGN AND THEORY 117
C. Modes of Storage and Processing

There are two formats in which data are held in the DAP
store. In the 'vertical'! format each humber is held entirely
within one PE with successive bits in successive store
locations. In the thorizontal! format each number is spread
along a row of PEs, in a manner similar to the storage of DAP
instructions. Words as seen by the host are also in this
format.

The most powerful processing mode, known as matrix mode,
operates on data in vertical format. ’

Vector mode processing is used where problem parallelism
is lower but makes less effective use of the PEs. This
operates on data in horizontal format and makes use of instr-
uctions which allow carrys to ripple along each row.

Small amounts of scalar processing msy be done in the
array to avoid the overhead of returning to the host. This
uses the horizontal format and is faster than vector
processing since more use is made of data dependent jumps and
advantage is taken of any parallelism within the arithmetic
operations. '

Transformations between horizontal and vertical format
are done by DAP processing and take less time than a multiply
operation. Thus the overhead is normally negligible.

II. ARITHMETIC AND BASIC OPERATIONS

Since the PEs are bit organised, arithmetic is built up
by low level software. This software is continually being
improved and is now substantially faster than a year ago.
Table 1 gives the times for some operations in standard
ICL 2900/IBM %360 floating point format, based on a 200 nSec
cycle time as in the pilot 32 x 32 DAP. Unbiased rounding
is used for greater accuracy than truncation towards zero.
The operations are on matrices or vectors which match the
DAP size.

For the operations in Table 1 both operands and the
result have the same rank. In cases where the ranks are
different the operation may be significantly faster, as
indicated by the examples in Table 2.

The time for multiplication of every element of a matrix
by a scalar is strongly dependent on the value of the scalar
and on whether it is known at compile time. It is always
significantly less than the time to multiply corresponding
elements of two matrices.

Surprisingly, the sum of all elements of a matrix can
be computed in a time only slightly longer than to add two
matrices. The method involves converting the array to block

118 P. M. FLANDERS et al.
TABLE 1

Some Operation Times for the Pilot DAP in pSec.
Estimates for a 64 x 64 DAP are in Brackets.

Operation Matrix Vector Scalar

Floating Point (32 bit):

ZeX+Y 148(135 54(32 272213

ZX*¥Y 305(250 50(45) 34(27

Z<X/Y 390(330) 100(90

ZeX¥*2 155(125) 40(35

Z«SQRT(X) 215(180

Z+X 14 13; 1

Z-MAX(X,Y) 34(33
Fixed Point (32 bit):

ZX+Y 23(22) 4

TABLE 2

Some Times in pSec for 32-bit Floating Point Mixed
Rank Operations. X and Y are Matrices; S is a Scalar

Operation Time

YX*s 40-150 (35-125)
S 170 160)
S-MAX(X) 46 45)

floating point, enabling the ten stages of addition to be
done essentially as fixed point operations. At each stage
the number of partial results is halved. During each of the
first five stages, each partial result field is split into
two fields such that twice as many PEs are devoted to each
partial sum. The last five stages, with the partial results
in horizontal format, are somewhat similar to vector mode
fixed point additions except that a carry save technique is
used. TFinally the scalar result is normalised. Sufficient
guard bits are used that both the worst case and average
rounding errors are less than if floating point were used
throughout.

A bit level algorithm is used to find the maximum element
of an array.

The DAP offers complete flexibility of function so the
time taken by a function depends only on its complexity. Some
important consequences of the flexibility are:

(a) More complex functions such as square root and logarithm
are faster in comparison with basic arithmetic operations

COMPUTER SYSTEM DESIGN AND THEORY 119

than on a conventional computer.

(b) The DAP can take advantage of symmetries within a

: function so that, for example, the time for the squaring
operation is about half that for general multiplication.

(¢} Operations that are inherently simple may be several
orders of magnitude faster than on conventional computers.

For example, to replace every element of a matrix by its

modulus takes less than 1 uSec for the whole matrix.

Also, data dependent jumps in conventional programs are

usually implemented on the DAP as conditional assigmments

of the result of an arithmetic operation. Thus the

jumps are essentially replaced by setting the activity;

this takes negligible time and the routines in the tables

all incorporate activity control. Global tests, resulting
in a branch if all elements of a boolean matrix are true,
take less than 1 pSec.

The complete flexibility of precision of data stored in
vertical mode gives continuous space and speed trade-offs.
Arithmetic function times vary approximately linearly with .
precision: multiplication more sharply, addition less sharply.

The flexibility of representation allows radix 2 or
radix 4 floating point representations to be used with
consequent improvements in the arithmetic times. Still lazger
gains may often be made by using block floating point
representation in which all elements of an array are normalised
to a common exponent. In this case addition and subtraction
are approximately four times faster.

ITI. SOFIWARE

The different modes of processing available in a computer
system inccrporating an NxN DAP are given below along with the
associated storage mode and degree of parallelism:

Processing Mode Storage Mode Data Parallelism

Host - Scalar Horizontal 1
DAP -~ Scalar Horizontal 1
DAP - Vector Horizontal I\T2
DAP - Matrix Vertical N

The key to using such a system effectively is to allow the
mode appropriate to the degree of parallelism to be selected
at any instant provided that the cost of switching modes is
not dominant. The high level language system which is being
implemented satisfies this requirement in a natural and
efficient way.

120 P. M. FLANDERS et al.
A. Program Structure

A program to be run on the DAP comprises a standard
FORTRAN program and a number of subprograms written in a
language developed for the DAP called DAP-FORTRAN. The
standard FORTRAN part is processed by the host and gives
access to all the facilities of the host including input-
output and fast scalar processing. When a subroutine written
in DAP-FORTRAN is called, the host processor activates the
DAP to process the subroutine and any further levels of
DAP-FORTRAN routines. Processing of the FORTRAN part by the
host computer may proceed asynchronously, including access
to data held in the DAP store.

Data communication between FORTRAN and DAP-FORTRAN is by
common blocks held in the DAP store. Since these are
immediately accessible to both the host and DAP, no time is
required for data transfer. Any changes in the format of
stored data necessitated by different processing modes are
performed either explicitly or implicitly by the DAP-FORTRAN
code.

B. The Language DAP-FORTRAN

DAP-FORTRAN provides a good match between problem and
hardware and encourages users to rethink algorithms to good
effect. It is an array processing dialect of FORTRAN permitt-
ing vectors and matrices, as well as scalars, as the basic
elements of an expression. Much of the explicit coding of
inner loops of a program is thus eliminated with consequent
advantages in code conciseness and readability.

The vectors and matrices of the language have their
dimensions constrained to match directly the size of the DAP
and are mapped in horizontal mode and vertical mode respective-
ly. Implicit mode changes occur during the processing of
statements when a row or column is selected from a matrix or
when a vector is expanded to a matrix. Larger arrays are
represented as indexed sets of vectors or matrices. When
handling such arrays the code tends to expand to about the
size of the equivalent FORTRAN code.

Operators are provided for arithmetic, logical and
relational operations ag in standard FORTRAN and they are also
applied in an element-by-element mamner to arrays. Standard
functions provide regular mappings of arrays as well as
element-by-element application of arithmetic functions such
as logarithm.

Indexing operations are a powerful generalization of the
conventional single element selection; in particular they
permit the selection of elements by logical masks, a task
particularly suited to the DAP.

COMPUTER SYSTEM DESIGN AND THEORY 121

Indexed assignment, where subscripts are used to select
arguments for updating, is generalized in a way compatible
with the generalized indexing. In particular the use of a
logical mask as a subscript is directly implemented via the
activity control of the DAP hardware.

C. DAP Code Translation

As well as DAP-FORTRAN, there is a macro-assembly
language for the DAP in which all code run to date has been’
written. The DAP-FORTRAN compiler will produce target code
in a form suitable for input to the assembler. This
intermediate form is the assembly language itself, supplemented
by a number of system macros.

After assembly the DAP subprograms, including any common
blocks to be held in the DAP store, are consolidated into a
contiguous block of code and data to be loaded into the DAP
store. Entries from the host processor to specific DAP-
TFORTRAN subroutines within this block are engineered by
"interface procedures" which enable the subroutines to be
called by the standard FORTRAN subroutine calling mechanism.
These interface procedures are generated by the DAP-FORTRAN
compilation system but are executed by the host.

D. Operating System Software

The DAP makes minimal demands on the host operating
system. The only special actions required are:

(a) The DAP program block is loaded into a contiguous area
of the DAP store where it resides for the duration of
the program (i.e. it is non-paged and locked into store).

(b) The host treats sub-blocks of the program block as data
.areas corresponding to FORTRAN common blocks.

(c) The host controls the DAP in a peripheral-like manner.

. This entails initiating processing by the DAP, after
setting up store protection registers in the DAP, and
servicing interrupts generated by the DAP when it
stops processing.

IV. ALGORITHMS IMPLEMENTED ON THE PILOT DAP

A. DMatrix Multiply

The usual method of calculating matrix products is to
compute each element in turn as the inner product of a row
of one operand with a column of the other. However the

122 P. M. FLANDERS et al.

method implemented calculates all elements in parallel by
using outer products. '

The DAP-FORTRAN code for multiplying 32x32 matrices A
and B to produce result C on a 32x32 DAP is:

C = 0.0
DO 100 I = 1,32
100 € =C + A(,*I) * B(*I,)

The expression A(,*I) selects column I of matrix A and
forms a new matrix each of whose columns is equal to this
column. At the hardware level this is done by extracting
and re-broadcasting each bit of the numbers in turn using the
row highways. Similarly row I of matrix B is extracted and
broadcast using the column highways. These and all other
non-arithmetic operations account for only about 10% of the
total time. The two temporary matrices are multiplied element
by element and added to the partially accumulated result. It
is interesting to note that this method makes no use of the
nearest neighbour connections.

Performance details are given in section 4.5.

B. . Matrix Inversion

The matrix inversion program run on the DAP uses the
algorithm of Gauss Jordan (i.e. complete elimination above
and below the pivot elements in a single forward sweep).

In each of the N steps required to transform an NxN matrix
into its inverse the elements of the new value A' are given
in terms of the current value A by the equations:

A = 1 3 Al.=A .-A, A, fori#p
Pa .Ap-q 1] 1) _19__DJ a.ndj;éq
Pq
A'. = A, for j s A} =- A, for i
b3 or j # a3 14 i rifp
A Iy
q Pq

where p and q are the numbers of the pivot row and column
respectively.

The DAP-FORTRAN code to invert a 3%2x32 matrix on a
32x32 DAP, along with some explanation, is given below. It
minimizes the number of arithmetic operations since these
account for most of the execution time. At each step the
pivot element is selected from all the remasining elements.
A11 row and column interchanges are left until the end.

COMPUTER SYSTEM DE§IGN AND THEORY 123
DAP-FORTRAN Code for Matrix Inversion with Pivoting

01 SUBROUTINE INVP(A)

02 REAL A(,),B(,) : ‘

03 LOGICAL PROW(,),PCOL(,),PMASK(,),PIV(,),MASK(,),PIVS(,)
04 INTEGER RN()

05 MASK=.TRUE.

06 PIVS=.FALSE.

07 DO 1 K=1,32

08 PIV=FRST(MAXP(ABS(A),MASK))

09 S=A(PIV)

10 PIVS=PIVS.OR.PIV

11 PROW=MATC §onc Eprvg
12 PCOL=MATR(ORR(PIV
13 PMASK=.NOT.(PROW.OR.PCOL)

14 A(PIV)=1.0

15 A=MERGE(A,0.0,PMASK)-A(,*PCOL)*MATR(A(PROW,) /s)
16 A(PROW)=-A

17 1 MASK=MASK.AND.PMASK

18 C RESHUFFLE ROWS AND COLUMNS

19 RN=ROWN(PIVS)

20 DO 2 K=1,32

21 2 B(K,)=A(RN(K)9)

22 DO 3 K=1,32
23 3 A(,RN(K))=B(,K)
24 RETURN

25 END

Line 2 declares A, the matrix to be inverted, and B to be
%2%32 matrices of 32-bit floating point nmumbers. Line 3
declares a number of 32x32 matrices with logical elements.
Line 4 declares RN to be a 32-glement vector of 32-bit
integers.

In lines 5 and 6 the elements of MASK and PIVS are all
set to TRUE and FALSE respectively.

Line 7 specifies the loop control in a way similar to
FORTRAN.

Lines 8 and 9 select a pivot element equal to the element
of the array with largest modulus, setting the scalar S equal
to the value of the element and the logical matrix PIV equal
to FALSE for every element except the one in the pivot row.
and column. When selecting the pivot element, only elements
for which the corresponding element of MASK have the value
TRUE are considered. .

PIVS records the positions of all the pivot elements and
is used later in the reshuffling of rows and columns. Line 10
sets the element of PIVS to TRUE at the position of the current
pivot element.

124 P. M. FLANDERS et al.

The elements of PROW and PCOL are set in lines 11 and
12 to have the value TRUE if and only if they are in the pivot
row and pivot column respectively. The elements of PMASK are
set in line 13 to have the value TRUE if and only if they are
in neither the pivot row nor the pivot column.

Line 14 sets the pivot element equal to one. Line 15
contains the arithmetic operations of the loop and accounts
for most of the execution time. The standard function
MERGE with arguments A, 0.0 and PMASK produces a matrix
whose elements are the same ag the elements of A where PMASK
has the value TRUE, and 0.0 elsewhere. The indexing operation
A(,*PCOL) produces a matrix with every column equal to the
value of the pivot column of A. The expression
MATR(A(PROW,)/S) produces a matrix with every row equal to the
value of the pivot row of A divided by S.

Line 16 negates the values of A in the pivot row only.
This is a trivial operation for the DAP and has negligible
execution time.

The last statement of the loop in line 17 sets the
elements of MASK in the pivot row and pivot column to FALSE
so that subsequent pivot elements are not selected from this
row or column.

Lines 18 to 25 perform the reshuffling of rows and
columns.

C. Fourier Transformation

The Fast Fourier Transform (FFT) of an initial set of N

points involves log (N) steps each of which is as follows:
a) Divide each se% into two equal sets;

b) Interchange adjacent sets in pairs;

c) Multiply by a factor dependent on set number;

d) Add to data at beginning of step.

For a DAP implementation with one data point per PE
interchanging the data sets involves shifting using the
neighbour connections. The algorithm considers the data as a
linear chain, but advantage is taken of the itwo-dimensional
connectivity of the DAP to reduce the amount of routing.

Consider a 1024 point complex transform on a 32x32 DAP.
In step 1, the interchange is done in a single shift by a
distance of 16 PEs making use of a cyclic comnection at the
array edges. The multipliers are {(1,=1) so it is only
necessary to negate half the array which can be done very
rapidly. In step 2 there are two shifts by 8 PEs in opposite
directions with the results being merged. The multipliers
are (1,~1,i,~i) which are implemented as conditional negation
and conditional interchange of real and imaginary parts.
Subsequent multiplications require arithmetic work. For
steps 6 to 10, the routing is similar to that for steps 1 to 5

COMPUTER SYSTEM DESIGN AND THEORY 125

respectively but is in the orthogonal direction.)

Further routing is needed to arrange the results in a
natural order. However, in many applications, such as
convolution, the forward transform is followed ultimately
by a backward transform, making the intermediate order
irrelevant.

The alogrithm implemented uses a standard radix four
technique to reduce the arithmetic compared with the basic
description given above. Data routing accounts for about 10%
of the overall time (or 20% with re-ordering). .

D. Convolution using Fermat Number Transforms

Tt is well known that a fast convolution may be achieved
by multiplying the Fourier Transforms of the operand vectors
term by term and taking the inverse tranaform of the result.
There are however other transforms which can be used in this
way and one which is particularly attractive for the DAP is
based on the use of Fermat Numbers (2). In this, addition and
multiplication in the field of complex numbers, as in the
FFT, are replaced by addition and multiplication modulo F, in
the ring of integers, where F, is the Fermat Number 2215 + 1.
The advantage is that for sui%able choices of t and the number
of points N, all the multiplier factors have very simple
binary representation; in almost all cases the multiplies are
implemented simply as cyclic shifts. The DAP takes advantage
of this at the bit level and hence achieves very fast transforms.
Since integers are used throughout, the convolution obtained
is exact, in contrast to the FFT method which is subject to
rounding error.

The code implemented carries out cyclic 2-D convolution
on 32x32 points using t=4, i.e. Ft = 65537, so all numbers
occupy 17 bits.

E. Performance Summary

The measured times for routines written in the assembly
language on the pilot 32 x32 DAP are as follows:s

Routine Time on Pilot
Matrix Multiply: 32-bit floating point 16 mSec.
(32x32)
Matrix Inversion: 32-bit floating point 29 mSec.
with full pivoting (32x32)
Tast Fourier Transform: 32-bit floating 14 mSec.
point including re-ordering (1024 point
complex)

Convolution: 16-bit integer (32x32) 4.% mSec.

126 P. M. FLANDERS et al.

These times can be reduced by:
a) improving standard functions;

making functions more specific to the application;

using an internal number representation better suited to
the DAP;

(a) improving the algorithms.

A DAP-FORTRAN implementation should only be slightly
slower than the corresponding assembly language implementation
since most of the time is spent in arithmetic routines rather
than in organisational work.

V. APPLICATIONS

Most problems, especially large ones, have a lot of
parallelism - usually much more than is apparent at first.
Mapping of applications on to the DAP is best done at the
problem level and with re-appraisal of the algorithms used;
it is less effective to look at sections of an existing
program in isolation. In nearly every case studied, almost
all the computation can be written efficiently in DAP-FORTRAN
and executed in the DAP. Performance estimates, derived
from detailed studies, for a number of complete calculations
are listed below. The comparisons are with existing
implementations on particular machines.

Application Estimated Performance
(64x64 DAP)

Finite Element Analysis 2-6 x 360/195
Simple relaxation 20 x 3%60/195

5 x ILLIAC IV
Meteorology - complete suite of 13 x 360/195
operational programs
3-D Magnetohydrodynamics 14-30 x 360/91
Many Body Simulation (Galactic 10 x 7600
Simulation)
A data re-organisation problem 10 x 7600
A table look-up problem 3 x CRAY 1
A pattern matching problem 300 x 360/195
Operations Research 1200 x 370/1 45

(The Assignment Problem)

Much of Finite Element Analysis involves matrix manip-
wlations which are well suited to the DAP but the performance
on other parts is less clear. Overall the performance is
expected to be good, particularly on large problems.

The simple relaxation calculation (3) is an elementary
method for solving Laplace's equation on a 64x64 grid.
Reference 3 gives the code in CFD for ILLIAC IV and in FORTRAN
for the 360/195 and gives times for 10 iterations as 17.2 and

COMPUTER SYSTEM DESIGN AND THEORY 127

67.2 mSec respectively. The problem can be programmed easily -
in DAP-FORTRAN, with each iteration needing only two additions
and a multiplication by 0.25. Thus 10 iterations would take
3.3 mSec using standard floating point. On the DAP, fixed
boundary conditions on an arbitrarily shaped area are dealt
with by using the activity control, with no increase in
computation time. Further dramatic performance improvements
are possible by adopting block floating point, and by using

an "average" routine to combine the addition and multiplication.
The next three problems are essentially more complex grid
calculations. All these are very natural for the DAP. :

The Table Look Up problem studied was used recently by the
Tos Alamos Scientific Laboratory to measure the scalar
performance of CRAY 1 (4). Conditional operations and table
look-up caused the code to be regarded as "gealar” despite the
fact that it is used to process arrays. Logarithm and
exponential functions are also involved. Table look-up in this
context means performing a number of indexing operations in
parallel on a single array. In the DAP a matrix of indices
is used to produce a matrix of corresponding selected elements.
Successive elements of the table are written selectively to the
result matrix, using as a mask a different boolean matrix for
each table element. Each boolean matrix is formed by testing
for equality between the index of the table element and the
matrix of indices. Global tests on the indices are used to
reduce the amount of work. Also, regularities of this problem
allow four result matrices to be generated in one pass through
the table.

The last two applications in the table are non-scientific
and achieve outstanding performance because they involve mainly
boolean operations.

A general observation is that the DAP performs well on
many tasks which might appear to be unsuitable for parallel
processing. This is a comsequence of the flexibility of a
bit organized array processor. Our studies, many of which
are complete problems, indicate that virtually all the
computation can be done effectively in the DAP and hence
there is no necessity for a powerful host.

Applications studied so far cover only a subset of all
computing, but it is expected that high performance will be
obtained on a wide range of CPU bound activities.

Vi. REFERENCES
(1) Reddaway, S.F., "DAP - A Distributed Array Processor",

Tirst Annual Symposium on Computer Architecture, Florida,
Decenmber 1973.

128 P. M. FLANDERS et al.

(2) Agarwal, R.C., Burrus, C.S., "Fast Convolution Using
Fermat Number Transforms with Application to Digital
Filtering", Vol. ASSP-2, No.2; pp 87-97, IEEE
Transactions on Acoustics, Speech and Signal Processing,
April 1974.

(3) Walkden, F., McIntyre, H.A.J., Laws, G.T., "A User's
Viever of Parallel Processors", CERN School of Computing,
1976.

(4) Keller, T.W., "Report of the CRAY-1 Bvaluation",

LA-6456 MS, Los Alamos Scientific Laboratory, 1976.

(5) Flanders, P.M., Hunt, D.J.; Parkinson, D.,Reddaway, S.F..

"Experience Gained in Programming the Pilot DAP,

A Parallel Processor with 1024 Processing Elements",

IMACS (AICA)-GI-Symposium on Parallel Computers - Parallel
Mathematics, Munich, March 1977.

VII. ACKNOWLEDGEMENTS

ICL wish to thank the Department of Industry for
permission to publish this information, which results from
work which was supported by a normal cost-sharing contract
by the Department's Advanced Computer Technology Project.

The many contributions by other members of the DAP
project are gratefully acknowledged.

